Exploitation of Sentinel-1 SAR data for studying geodynamic, tropospheric and ionospheric processes.

István Bozsó, Eszter Szűcs, László Bányai, Viktor Wesztergom

MTA CSFK Geodetic and Geophysical Institute

2019.02.28.

Introduction

InSAR technology: Synthetic Aperture Radar (SAR) based interferometry:

- SAR images: ground-based, airplane, UAV, satellite
- high resolution; $20m \times 5m$ sized pixels Low Earth Orbit C-band (5.405 MHz) SAR satellites
- each pixel: amplitude and phase represented as a complex number
- single scene phases are random
- formation of an interferogram (IFG): phase differences between two SAR scenes

Phase of an interferogram

Bozsó et al. (MTA CSFK GGI)

Phase of the interferogram

 $\Phi_{\mathsf{IFG}} = \Phi_{\mathsf{defo}} + \Phi_{\mathsf{atmo}} + \Phi_{\mathsf{topo}} + \Phi_{\mathsf{orbit}} + \Phi_{\mathsf{noise}}$

- Φ_{IFG}: phase of the interferogram
- $\Phi_{defo.}$: phase caused by surface deformation, that occurred between the two SAR acquisitions, in the Line-of-Sight (LOS) direction
- $\Phi_{atmo.}$: phase caused by the change in atmospheric microwave propagation speed
- Φ_{topo} : phase due to topography
- Φ_{orbit} : phase from errors of the orbital state vector
- Φ_{noise} : noise from residual phase terms, that cannot be modeled

Processing the interferometric phase

 $\Phi_{\mathsf{IFG}} = \Phi_{\mathsf{defo.}} + \Phi_{\mathsf{atmo.}} + \Phi_{\mathsf{topo.}} + \Phi_{\mathsf{orbit}} + \Phi_{\mathsf{noise}}$

Separation and estimation of the different phase terms:

- $\bullet~\Phi_{topo}$: using DEM, residuals correlated with baseline
- Φ_{atmo} : atmopsheric models, temporal filtering
- $\bullet~\Phi_{\text{oribt}}$: more precise orbit data, deramping
- spatial filtering Goldstein-filter¹

Bozsó et al. (MTA CSFK GGI)

¹ZebkerGoldstein1986

Deformation

If estimation of $\Phi_{defo.}$ is done \rightarrow phase unwrapping \rightarrow LOS deformation.

$$d_{\mathsf{defo.}} = rac{\lambda}{4\pi} \Phi_{\mathsf{defo.},\mathsf{unwrapped}}$$

Multiple interferograms \rightarrow time-series analysis \rightarrow LOS deformation time-series.

Bozsó et al. (MTA CSFK GGI)

Examples of InSAR applications: Mapping surface displacement based on natural scatterers

Mapping surface displacement based on natural scatterers

- ullet pprox 3.5 years of Sentinel-1 A descending orbit data (105 scenes)
- covering the Praid salt extrusion in Carpathian Bend area
- salt deformation governed by weather phenomena
- TopoTransyvania project: investigation of the Carpathian Bend and subduction zone
- analyse geodynamic processes (seismic activity, post volcanic activity, salt tectonics)
- SAR images processed with the Gamma Software REF

Mapping surface displacement based on natural scatterers

First results show deformation on the southern flanks of the salt diapir. Subsidence is in the 3 - 4 cm/yr range. Lack of scatterers on the top of the salt diapir \rightarrow artificial reflectors.

Bozsó et al. (MTA CSFK GGI)

Mapping surface displacement based on natural scatterers

Clear trend of near constant velocity deformation away from the satellite.

Bozsó et al. (MTA CSFK GGI)

Examples of InSAR applications: Monitoring the displacement time-series of benchmark reflector networks

Monitoring the displacement time-series of benchmark reflector networks

- ullet pprox 1 year of Sentinel-1 A and B ascending and descending orbit data
- geodetic/geodynamic integrated benchmarks (IBs)
- IB network, settlement (Dunaszekcső) along the loess banks of the Danube
- GNSS measurements 1 year apart
- 3D displacements from combination of InSAR and GNSS data with Kalman filtering
- SAR images processed with Gamma and StaMPS software REF

Bozsó et al. (MTA CSFK GGI)

Monitoring the displacement time-series of benchmark reflector networks

Similar time-series for all 3 moving reflectors, subsidence and movement towards the east (Danube).

Examples of InSAR applications: Estimation of Integrated Water Vapor (IWV) maps using InSAR

Estimation of Integrated Water Vapor (IWV) maps using InSAR

- Sentinel-1 A and B ascending dataset covering the area around previously described benchmarks
- assumptions:
 - no surface displacement (except for the landslide area)
 - IFG phase due to change in IWV dominates over IFG phase caused by change in pressure and temperature profiles
- calculation of Zenith Wet Delay (ZWD) changes and converting them into absolute ZWV values using the ECMWF ERA-Interim model

• conversion of ZWD into IWD:

$$\frac{\text{ZWD}}{\text{IWD}} = 10^{-8} \left(k_2 - \frac{R_d}{R_w} k_1 + \frac{k_3}{T_m} \right) R_w$$
$$T_m = 70.2 + 0.72 T_s$$

Constants: k_1 , k_2 , k_3 , R_d , R_w REFS

• SAR images processed with Gamma and StaMPS software REF

Estimation of Integrated Water Vapor (IWV) maps using InSAR

Bozsó et al. (MTA CSFK GGI)

H-SPACE, Budapest 2019

2019.02.28. 16 / 22

Examples of InSAR applications: Calculation of slant range ionospheric TEC differences

Calculation of slant range ionospheric TEC differences

- two PALSAR-1 SAR scenes covering the Yamagochi Prefecture in Japan, L-band, more sensitive to ionospheric effects
- dispersive propagation of electromagnetic waves in ionosphere, phase delay depends on frequency
- filtering IFG creating high and low sub-band IFGs, $\Delta {\rm TEC}$ is proportional to sub-band IFG phase differences REF
- robust method developed by REF based on REF:

$$\Phi_{\text{iono.}} = x \Phi_0 + y (\Phi_{\text{high}} - \Phi_{\text{low}}) = \frac{4\pi K}{cf_0} \Delta \text{TEC}$$

Constants: x, y depend on sub-band frequencies, $K = 40.31 \text{ m}^3 \text{s}^{-2}$, c - speed of light, f_0 - radar center frequency

• SAR images processed with Gamma and StaMPS software REF

Calculation of slant range ionospheric TEC differences TECU 0.2

0.2	
0.1	Total Ele
0.1	tent (TE
0.0	between 2
	and 2
-0.1	above t
-0.2	agochi
	Japan. T
-0.3	are relativ
-0.4	per left co
	SAR scen
-0.5	$= 10^{16} el$
	Backgroui
-0.6	the SAR
-0.7	intensity i
	2009.03.2
-0.8	

ctron Con-C) changes 2009.03.28 2009.06.28. he Yam-Prefecture EC changes e to the uporner of the e. 1 TECU $ectron/m^2$. nd image is backscatter mage of the 8. scene.

Bozsó et al. (MTA CSFK GGI)

Discussion

- multiple applications of InSAR technology
- Sentinel-1 extremely useful for monitoring surface deformation
- estimation of slant-range and vertical integrated quantities (IWV, TEC) describing the state of the atmosphere
- long-term time series of integrated quantities: trends, their correlation, troposphere - ionosphere interaction

Future plans

- Refinement of deformation monitoring techniques.
- $\Delta {
 m TEC}$ estimation based on Sentinel-1 images
- IWV calculation without the need for auxiliary data (weather model).

Thank you for your attention!

Acknowledgement

Contains modified Copernicus Sentinel data 2014-2018, processed by ESA.

This study was supported by the TopoTransylvania - a multidisciplinary Earth science initiative in Central Europe to tackle local and global challenges project (NKFI NN 128629).

Bozsó et al. (MTA CSFK GGI)